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ABSTRACT The frequencies with which alleles are alike
within (Q) and between (q) populations are formulated for
monoecious populations undergoing drift and mutation with
unequal mutation rates among alleles for a finite number (k) of
allelic states. The effective number of alleles and an application
to Nei's measure of genetic distance [Nei, M. (1972) Am. Nat.
106, 283-292] are also considered for this model. The equilib-
rium values ofQ and q increase as k decreases. Unequal muta-
tion rates further increase the equilibrium values and reduce
the rates of approach of Q and q to these values. The transi-
tional values ofQ and q are very dependent on the initial popu-
lation frequency composition when mutation rates are un-
equal. Reducing k, of course, reduces the effective number of
alleles, which is further reduced by unequal mutation rates.
Complications introduced by initial population composition,
unequal mutation rates, and number of allelic states, coupled
with data limitations for long-term measures of genetic dis-
tance or population differentiation, with mutation as the main
driving force, are discussed.

The probability of genes being alike, including both identity
by descent and alike in state, is used to formulate the effects
of drift within and between monoecious populations in which
mutation rates are equal for a finite number of allelic states.
The transitional and equilibrium values of the probabilities of
alikeness within and between populations are extended to
accommodate unequal mutation rates among alleles. Also,
the effective number of alleles for this model is compared
with that of a stepwise mutation model (1). Some of the re-
sults are applied to Nei's (2) measure of genetic distance.
Relevant literature, the use of identity by descent for mea-
suring short-term genetic distances, and limitations of data
for measuring differentiation among populations are left for
the Discussion.

Genes Alike Within Populations

Denote the probability of a random pair of genes being alike
by Q and unalike by 1 - Q. Let the general mutation rate be
u and the mutation rate of any allele to any other specific
allele be v.
A randomly mating monoecious population of constant

size N with distinct generations is assumed, so that with
probability 1/2N a random pair of genes in the offspring
stems from a single parental gene and, with probability 1 -
(1/2N), from different parental genes, but which are alike
with' probability Q. Whether from a single parental gene or
two alike parental genes, the offspring genes are alike with
probability a = (1 - u)2 + uv. The term uv is included to
allow both genes to mutate to the same allele. If the ancestral
genes are not alike, they are alike in the offspring with proba-
bility b = 2(1 - u)v + (u - v)v for the cases in which one

gene does not mutate and the other mutates to the same gene
or both genes mutate to the same gene.
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With these probabilities, a transition equation is construct-
ed (t denotes generation):

Q+= a + 1 - 2 [Qta + (1 - Qt)b].
By equating the Qs, the final or equilibrium value, Q*, is
found,

Q a - b + 2Nb
2N(1- X)

where X = (-± a - b). The following relationship
holds 2N/

Q- Q= (Q* - Q,1)X = (Q* -QoW'
so that

Qt= Q*- (Q* - Qo)X,
where Q0 is the initial probability of a pair of genes being
alike. Note that Q0 = 1 when the initial population is mono-
morphic.
By dropping terms u and uN-1 or less, approximate val-

ues are obtained
X -1 - 2u - 2v - (1/2N),

1 + 4Nv
1 + 4Nu + 4Nv'

i Q* 1 +4Nu
1 + 4Nu + 4Nv'

With k allelic states and equal probability of mutating from
one to the other, v = u/(k - 1) with the result that

1 + 4Nu/(k - 1) 1 + 4Nv
1 + 4Nuk/(k - 1) 1 + 4Nkv

The probability decreases as k increases and, for the infinite-
allele model, the classical result is obtained,

Q*= 1
1 + 4Nu

Regarded as a parameter, Q is also the expected frequency
of homozygotes in monoecious populations, and 1 - Q is the
expected frequency of heterozygotes. To estimate Q from a
sample of n individuals, there are n(2n - 1) pairs of genes. If
we calculate the frequency of pairs alike, we obtain

2nzp5 - 1

2n- 1

where Pi is the sample frequency of the ith allele. Further,

IN = Q

where % denotes expectation.

Genes Alike Between Populations

Here we consider two populations from the same founder
population that drift independently under the same previous
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mutation model. The probability of a random pair of genes,
one from each population, being alike is denoted by q and
not alike by 1 - q. Obviously, qo = Qo, since the populations
were one and the same at time zero.
Using the same arguments as before for the effects of mu-

tation, we find

qt+l = qta + (1 - q,)b
with an equilibrium value of

* = b
q 1 -a

where a = a - b. Then,

q- qt= (q* - q,-)a = (q* - qo)at
and

qt= q*- (q* - qo)a'.

Dropping the small terms as before gives

a 1 - 2u - 2v = 1 - 2uk/(k - 1) = 1 - 2kv

V _1
U + V k'

and q* is inversely related to the number of allelic states,
being zero for the infinite-allele model. The minimum value
that q can take is q*. If the initial population happened to
have q0 = q*, then q, = q* is a constant.

If we index the sample allele frequencies of the two popu-
lations by 1 and 2, then the frequency with which pairs of
alleles are alike is

q = EPilA2

and

q q.

Unequal Mutation Rates

Unequal mutation rates among alleles modify the results.
Let the mutation rate of any other allele to the ith allele be vi.
If = Xivi, the mutation rate of the ith allele to another allele
is - vi. Thus, the loss in frequency is pi(a - vi), while the
gain in frequency is (1 - pi)vi. At equilibrium, there is no
change in frequency,

pi(fi - vi) = (1- pi)vi or p* = v'.
U

Then, the probability that a random pair of alleles are alike
between two independent equilibrium replicate populations
is

2

q* =ZE (p*)2>= k(13+O=k(j2 + U2) V2 1+ C2
a2~ k2132 k k

where = u/k, a2 is the variance of the mutation rates, and c
is the coefficient of variation of the mutation rates. The effect
is to increase q* or to reduce the effective number of allelic
states, which may be taken to be

k
ke + C2

Unfortunately, we cannot just substitute ke for k in the previ-
ous results.
To develop the transition equation for q, the frequency of

alike pairs of parental alleles i, one from each population, is
pilp,2, and the probability that they remain alike is ai = (1 -
a + v.)2 + Yjivj2. The frequency of unalike pairs of alleles i
and j is Pil Pj2, and the probability of their being alike in the
offspring is bij = (1 - a + v1)vi + (1 - a + Vj)Vj + kpi jV~k
The transition equation becomes

qt+ l = W ( Pi 2tai + ZPi tpj2Aj

Before taking expectation, all possible cancellations are tak-
en after dropping terms a2 or less

qt+l = 'i2t(l - 2u) + >PiltVi + ZPi2Vi

Since cj1pfitP2, = q, and Jilt = %P.2t = pit,

qt+ = q,(1 - 2a) + 2 LpiVi

and the transition is gene-frequency-composition dependent,

q* - qt+ = (q* - qt)a + 2v3(1 + C2) - 2 Epitvi,
where a = 1 - 2u.
Denote the mean of the vis as

v,= >LPitVi.

Then, v(1 + c2) - v* is the equilibrium value. To find the
transition equation for v, note that

Pit+i = PiA( - + vi) + (1 -pi)
and

Pit+ lVi = piV1 - a) + IV?
or

= v3,(l - a) + kW2(1 + c2).

Using kv= a and v(1 + c2) = v*, we find

v* -t+ = (13 1Pd) =(*v * -(* o)p',

where p = 1 - a. If the initial population is fixed for the ith
allele, then V0 = vi.
We now substitute these results into the transition equa-

tion for q,

q* - q+l = (q* - q,)a + 2(i* - 1O)p'.
Repeated substitution into q* - q, produces

q*- qt+ = (q* - qo)a'+1 + 2(13* -vo) >aipt-i.
i=O

After evaluating

±aippt-i p= -a
i=o p- a p - a = u,

the transitional value of q is found

qt= q* - (q* - qo)at - 2(1* - Po)(p' - a')/a.
Again, if qO = q*, then v0 = 13* and q, = q* remains constant.
We now sketch the transition for alikeness within popula-

tions. Before mutation, the offspring genes that stem from a
single parental gene are alike for the ith allele with frequency
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P5i and those from two distinct parental genes are alil
ith allele with frequency (2Nb? - p3)/(2N - 1). The
cy of unalike pairs of parental alleles i andj is 2Nj5ij
1). The transition equation becomes

A

Q:+i = t4 2N 2N- 2N - 1

+ 2N El PAi51tb1]}2N - 1jj

Again, all possible cancellations are taken after
terms I2 and aN-1 or less.

1 + 4N>L1O(v,

(2NIPi2-1)(
2N - 1

Since

2NJ-2,- 1

2N-1 =

we have

1 + 4Npitvi A 1 + 42

2N Q+ 2N

and at equilibrium

* = v1( + C2), * 1 + 4Nv3l + c2)
1 + 4Nk"

ke for the
frequen-
pj/(2N -

it)-a;

sizes, 100 and 1,000, are considered, which have the follow-
ing characteristics

N 4Na Q*
100 0.58 0.824

1,000 5.83 0.593

Q.'j Two initial frequencies are used, qo = Qo = 0.2, 1. The 0.2 is
for a case when the initial values are less than the equilibri-
um values and implies equal gene frequencies with iO = v.
For qO = 1, initial populations are considered fixed for the
allele with the largest mutation rate to other alleles, Vo =
10-5, and for the allele with the smallest mutation rate to
other alleles, VO = i03. Also considered for qO - 1 is the

dropping equal mutation model with v = i. For this model, q* = 0.2,
Q= 0.705 (N = 100), 0.317 (N = 1,000).
The results for q are displayed in Fig. 1 and for Q in Fig. 2.

With equal mutation rates, the transitional rate of approach
of q to q* is constant, a. With unequal mutation rates, the
transitional rate is not constant. For Vo > i*, as in the case of
jO = 10-3, the transitional rate is slower throughout as ex-
pected, although the difference from equal mutation rates is
not so obvious because of the difference in equilibrium val-
ues. With Vo < v*, as in the case of VO = 10-5, the initial
transitional rate is faster than for equal mutation rates. How-
ever, the equilibrium value is overshot and the return toward
q* from below is at a slower rate than for equal mutation
rates. Also, for VO = i < v*, the approach to q* is from below
and at a slower rate than for equal mutation rates. Thus, the
general effect, particularly in the long run, of variable muta-
tion rates is to reduce the transitional rate.
The same types of effects of unequal mutation rates on the

transition of Q are seen in Fig. 2. The equilibrium values are
of course approached at a much more rapid rate forN = 100
(Fig. 2a) than for N = 1,000 (Fig. 2b).

- Effective Number of Alleles

The so-called effective number of alleles, m, at equlibrium is
given by m = 1/Q* or

1 + 4Nuk/(k - 1) 1 + 4Nkv
Mk = 1) +

1 + 4Nu/(k - -) 1 +4Nv

which reduces to the previous Q* when c2 = 0 and i3 = v.
Again, the equilibrium value is increased with unequal muta-
tion rates as expected.
The transition equation is also gene-frequency-composi-

tion dependent,

(Q* - Qt+i) = (Q* - Q,)A + 2(v3* - 1t).
Substituting X for a and Q for q in the derivation of q, we get

t= Q* - (Q*-Qo)X' - (f* -VO)2(p't - ')/(p -)
p - X = (1 + 2Nkv)/2N.

While the effects of unequal mutation rates on equilibrium
values q* and Q* are readily apparent, the effects on transi-
tional values are not and require some numerical evaluations
for clarification.
As an-example, five allelic states are considered with mu-

tation rates of 10-3, 10-3.5, 10-4, 10-4.5, and 10-5. The aver-
age mutation rate is 13 2.92 x 10-4 and 1 + C2 2.614, q*
0.523. Note that q* and c2 do not change for any constant,
say 102, times the mutation rates. For Q. two population

cs 0.6-

FIG. 1. Transitional values of q for various initial conditions vO
and qO. Curves: 1, VO = i0-3, qO = 1; 2, VO = V, qO = 0.2; 3, jo = 10-S,
qO = 1; 4, equal mutation rates, qO = 1.
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(2a)

1,200 1,800 2,400 3,000

FIG. 2. Transitional values of Q for various initial conditions %O and Q0. (a) N = 100. (b) N = 1,000. Curves: 1, iO = i0-', Q0 = 1; 2, iO = v,
Q0 = 0.2; 3, VO = 10-5, Q0 = 1; 4, equal mutation rates, Q0 = 1.

for the k-allelic-state model, which reduces to the classical
result for the infinite-allele model

m. = 1 + 4Nu

(3). With unequal mutation rates, the effective number of al-
leles is reduced to

1 + 4Nk"
k 1 + 4Nfv(1 + c')

Ohta and Kimura (1), in studying a specific stepwise muta-
tion model for electrophoretic variants, found the effective
number of alleles to be

M= Y+ u.

By equating mk to ms, an equivalent number, k', of allelic
states is found to be a solution to (k - 1)(k - 3) = 8Nu or

k' = 2 + V1 + 8Nu.

Thus k' > 3 and can be much larger when 4Nu is very large
but is only 4 when 4Nu = 1.5, 5 when 4Nu = 4, and so on.
Ohta and Kimura (1) noted that ms and m. are not very dif-
ferent for small 4Nu but that ms is much smaller than m. for
large 4Nu.

Nei's Distance Measure

Nei (2) defined a distance measure, D = -ln I, where after
correcting for bias (4) and reducing the formula to that for a
single locus

I =

The expectation of I is approximated in the following man-
ner: ~~Q

q - (q* - Qo)a' -(* - fo)2(p'- a')/(p - a)
Q - (Q* - Qo)X -(* - o)2(p' - X')/(p - X) []

There is considerable simplification if the founder popula-
tion is in equilibrium with respect to mutation and drift-i.e.,
Qo = Q* and vo = v*. Then,

q* - (q* -Q*)at
WI- ~~~Q* 9

but the relationship to time is still complex with a few allelic
states. Returning to the original formula (1), there is simplifi-
cation for an infinite number of allelic states,

Q0at

Q*-(Q* - Qo)xt'

but again the relationship to time is complex if the original
population is not in equilibrium. It is only with the infinite-
allele model and initial equilibrium that the relationship to
time simplifies.

WI = a', -lnI -2ut.

Discussion

Many of these results are not new, particularly for equal mu-
tation rates. For the infinite-allele model, Q* was given by
Kimura and Crow (3) and solutions for both Q and q were
given by Nei (5). With k alleles, Q* and q* were obtained by
Kimura (6). Also, Q* can be found in Watterson (7) and is a
special case of Takahata's (8) study of a composite stepwise
mutation model. The transition equation for Q is given by
Golding and Strobeck (9) as 01/0, corresponding to a single
site with k alleles, in their study of the distribution of nucleo-
tide site differences. Also, from general multiple-site formu-
lations of Takahata (10), by focusing on a single site, the
equilibrium value of Q and the transition equation for q can
be deduced. In this context, q and Q are for a single variant
(site) with k alleles (states).

Griffiths (11) developed a solution for Q with equal muta-
tion rates between pairs of alleles but different among pairs.
The effects of unequal mutation rates are not readily appar-
ent in his formulations. By an inequality, he shows for a con-
stant overall mutation rate that Q is least when all mutation
rates are equal. Our model and results are the same as his
with equal mutation rates. Griffiths (12) also formulates q for
his mutation model but with the initial population in equilib-
rium (qo = Q*). Again, he shows by inequalities that q is
least for equal mutation rates.
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The effects of unequal mutation rates on q* and Q* are

readily apparent for our model, increasing both. Unequal
mutation rates reduce the transitional rates of q and Q, at
least in the long run. The numerical illustrations of the transi-
tions demonstrate the key role that the initial population
composition plays, leading to a variety of transitional out-
comes.
The frequencies q and Q are dependent on the measuring

device whether it be of electrophoretic variants or other
means of identifying allelic variation. The appropriate muta-
tion rates are those that change one recognizable variant into
another recognizable variant. In the case of electrophoretic
variants, it does not matter whether the changes are confor-
mational, electrical charge, or other, as long as they are rec-

ognized and are mendelian. In the same vein, all those
changes, even those known to occur, that are not recognized
by the measuring device are appropriately ignored. Thus,
two different electrophoretic protocols for the same enzyme

will often have different parameters. These factors will lead
to differences among loci in addition to other inherent differ-
ences among loci such as mutation rates and numbers of alle-
lic states.
The greater the number of allelic states, the more informa-

tion there is on the differentiation of populations and species.
Singh et al. (13), by varying gel concentration and pH and
with the use of heat denaturation, increased the number of
allelic classes from 6 by standard gel electrophoresis to 37
for xanthine dehydrogenase in Drosophila pseudoobscura
and turned up unsuspected population differences. In most
studies, however, standard protocols are used. Even when a
large net is cast in terms of the geographic distribution of
populations or species (or both), the numbers of allelic states
are often small. Whether real or from limitations of the mea-
suring devices, the limitations of the data are real in terms of
the number of allelic states for genetic distances or other
measures of population differentiation.
An alternative measure of distance may be based on iden-

tity by descent for short-term evolution. It is often not clear
to me when reading the literature whether "identity by de-
scent," "alike in state," or some combination is being in-
voked when the term "identity" is used. Most often identity
appears to mean simply alike. Without mutation, identity by
descent is the most useful concept for describing the effects
of drift. For example, without mutation,

Qt = Q* (Q* Qo)W'
as before, except now Q* = 1 and X = 1 - 1/2N, so that

Q= 1 - X' + X'Qo = 6, + (1 - t)QO,

where 6, = 1 - X' is the probability that a random pair of
genes are identical by descent. For this model, q, = qO = Qo.
Consequently, an estimate of is provided by

Q1 + Q2 - 2q
2(1 - q)

for equal-sized samples from the two populations, regardless
of Qo and the measuring device as long as there are at least
two allelic states. It is unbiased in the sense that the ratio of
expectations is unbiased. While not readily apparent, this is
the same estimate of from pooling the within-individual and
between-individual-within-population mean squares, as is
appropriate for monoecious populations in which the in-
breeding and coancestry coefficients are the same (14) and
further summing numerators and denominators over alleles.
If one omits the sample size corrections in 6, it reduces to
Latter's (15) estimate of kinship, (p*. It is this estimator com-

bined over loci that was used as a basis for a distance mea-
sure

2= -ln(l - 0), W26 t12N
proposed and investigated by Reynolds et al. (16) as a mea-
sure of short-term evolution before mutations have an over-
riding effect.
The number of recognizable allelic states affects the esti-

mate of 6 in terms of bias and sampling variance. Bias de-
creases as the number of states increases but can essentially
be eliminated by summing Qs and qcs over several loci. That
having been accomplished, the information about 6 becomes
roughly aligned with the total degrees of freedom, li(ki - 1)
(i indexes loci), for states (16). Mutational synonymities that
are not recognized, as is often the case with electrophoresis,
actually extend the time scale over which identity by descent
is an appropriate measure.
Long-term genetic distance measures with mutation rates

as the main driving force are much more complicated. If one
knows k and qO, then

(k - 1) __ __

-k n

is linearly related to divergence time as a multiple of the mu-
tation rate [considered by Takahata (10) in a more complex
setting]. Without making some assumption about qO, the task
is impossible. Even if one assumes equilibrium values, qO =
Q*, the linear relationship of Nei's D to divergence time de-
pends on a large number of allelic states, which in practice is
determined by the measuring device. Nei's distance measure
is considered only as an example. It is anticipated that other
measures of genetic distance or of population differentiation
based on gene frequencies and mutations will have even
greater difficulties.

In applications, qcs and Qs are summed or averaged over
loci for the estimation of genetic distance, many loci being
required to reduce the sampling variability to acceptable
terms. An average for many loci does not alleviate the prob-
lems concerning initial population composition, unequal mu-
tation rates, and the number of allelic states, however.
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